Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739805

ABSTRACT

Background: The current pandemic of COVID-19 is posing a major challenge to public health on a global scale. While it is generally believed severe COVID-19 results from over-expression of inflammatory mediators (i.e. a “cytokine storm”), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of disease in severe COVID-19 cases to reveal the presence and abundance of all potential pathogens present - the total “infectome” - and how they interact with the host immune system in the context of severe COVID-19 disease.Methods: We considered one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood and serum) taken in each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously reveal pathogen diversity and abundance, as well as host immune responses, within each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels.Findings: Eight pathogens were identified in these COVID-19 patients - Aspergillus fumigatus, Mycoplasma orale, Myroides odorantus, Acinetobacter baumannii, Candida tropicalis, herpes simplex virus and human cytomegalovirus - that appeared at different stages of disease course. Notably, the dynamics of inflammatory mediators in the serum as well as respiratory tract were better associated with the dynamics of the infectome as a whole rather than SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn was associated with the proliferation of SARS-CoV-2 and the co-infecting pathogens.Interpretation: The cytokine storm that resulted in aggravated acute lung injury and death involved the highly complex and dynamic entire infectome of each patient, of which SARS-CoV-2 was a component. These results call for a precision-medicine approach to investigating both the infection and the host response on a daily basis as a standard means of infectious disease characterization.Funding: Guangzhou Institute of Respiratory Health Open Project (Funds provided by China Evergrande Group) - Project No. (2020GIRHHMS01), Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project (2019ZT08Y464), Macao Science and Technology Development Fund (0042/2020/A), Science research project of the Guangdong Province (2019B030316028), Special Project for Scientific and Technological Development and Emergency Response in COVID-19 Prevention and Control of Guangdong Province (2020A111129028), Special Project for Research and Promotion of Prevention and Control Techniques of COVID-19 and Emergency Response in Dongguan City (202071715001114), Jack Ma Foundation (2020-CMKYGG-02), Guangzhou Medical University High-level University Clinical Research and Cultivation Program ([2017] 159 and 160) and ARC Australian Laureate Fellowship (FL170100022).Declaration of Interests: We declare no competing interests.Ethics Approval Statement: The ethics committee of the FAHGMU (Ethics No. 2020-85) and Dongguan’s People’s Hospital (KYKT2020-005-A1) approved the sampling procedure and the use of patient samples for this study. Informed consent was obtained from each patient.


Subject(s)
COVID-19 , AIDS-Related Complex , Communicable Diseases , Acute Lung Injury
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.03.366138

ABSTRACT

The ongoing of coronavirus disease 2019 (COVID-19) pandemic caused by novel SARS-CoV-2 coronavirus, resulting in economic losses and seriously threating the human health in worldwide, highlighting the urgent need of a stabilized, easily produced and effective preventive vaccine. The SARS-COV-2 spike protein receptor binding region (RBD) plays an important role in the process of viral binding receptor angiotensin-converting enzyme 2 (ACE2) and membrane fusion, making it an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticles vaccine candidates, RBD-Ferritin (24-mer), RBD-mi3 (60-mer) and RBD-I53-50 (120-mer), with the application of covalent bond linking by SpyTag-SpyCatcher system. It was demonstrated that the neutralizing capability of sera from mice immunized with three RBD-conjugated nanoparticles adjuvanted with AddaVax or Sigma Systerm Adjuvant (SAS) after each immunization was ~8- to 120-fold greater than monomeric RBD group in SARS-CoV-2 pseudovirus and authentic virus neutralization assay. Most importantly, sera from RBD-conjugated NPs groups more efficiently blocked the binding of RBD to ACE2 or neutralizing antibody in vitro, a further proof of promising immunization effect. Besides, high physical stability and flexibility in assembly consolidated the benefit for rapid scale-up production of vaccine. These results supported that our designed SARS-CoV-2 RBD-conjugated nanoparticle was competitive vaccine candidate and the carrier nanoparticles could be adopted as universal platform for future vaccine development.


Subject(s)
Coronavirus Infections , Arthritis, Experimental , Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.02.365551

ABSTRACT

Recent genome wide association studies (GWAS) have identified genetic risk factors for developing severe COVID-19 symptoms. The studies reported a 1bp insertion rs11385942 on chromosome 3 and furthermore two single nucleotide variants (SNVs) rs35044562 and rs67959919, all three correlated with each other. Zeberg and Paabo subsequently traced them back to Neanderthal origin. They found that a 49.4 kb genomic region including the risk allele of rs35044562 is inherited from Neanderthals of Vindija in Croatia. Here we add a differently focused evaluation of this major genetic risk factor to these recent analyses. We show that (i) COVID-19-related genetic factors of Neanderthals deviate from those of modern humans and that (ii) they differ among world-wide human populations, which compromises risk prediction in non-Europeans. Currently, caution is thus advised in the genetic risk assessment of non-Europeans during this world-wide COVID-19 pandemic.


Subject(s)
COVID-19 , Genomic Instability
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.02.365049

ABSTRACT

Background: Over the past two decades, there has been a continued research on the role of small non-coding RNAs including microRNAs (miRNAs) in various diseases. Studies have shown that viruses modulate the host cellular machinery and hijack its metabolic and immune signaling pathways by miRNA mediated gene silencing. Given the immensity of coronavirus disease 19 (COVID-19) pandemic and the strong association of viral encoded miRNAs with their pathogenesis, it is important to study Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) miRNAs. Results: To address this unexplored area, we identified 8 putative novel miRNAs from SARS-CoV-2 genome and explored their possible human gene targets. A significant proportion of these targets populated key immune and metabolic pathways such as MAPK signaling pathway, maturity-onset diabetes of the young, Insulin signaling pathway, endocytosis, RNA transport, TGF-{beta} signaling pathway, to name a few. The data from this work is backed up by recently reported high-throughput transcriptomics datasets obtains from SARS-CoV-2 infected samples. Analysis of these datasets reveal that a significant proportion of the target human genes were down-regulated upon SARS-CoV-2 infection. Conclusions: The current study brings to light probable host metabolic and immune pathways susceptible to viral miRNA mediated silencing in a SARS-CoV-2 infection, and discusses its effects on the host pathophysiology.


Subject(s)
Coronavirus Infections , Diabetes Mellitus , Severe Acute Respiratory Syndrome , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.30.360545

ABSTRACT

Respiratory viruses initially infect the naso- and oropharyngeal regions, where they amplify, cause symptoms and may also be transmitted to new hosts. Preventing initial infection or reducing viral loads upon infection might soothe symptoms, prevent dissemination into the lower airways, or transmission to the next individual. We here analyzed the potential of plant derived products to inactivate SARS-CoV-2 and influenza virus. We found that black chokeberry (Aronia melanocarpa) juice, pomegranate (Punica granatum) juice, and green tea (Camellia sinensis) have virucidal activity against both viruses, suggesting that oral rinsing may reduce viral loads in the oral cavity thereby lowering virus transmission.


Subject(s)
Respiratory Tract Infections , Leishmaniasis, Visceral
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.02.363598

ABSTRACT

Data on potential effectiveness and prospects of treatment of new coronavirus infection of COVID-19 caused by virus SARS-CoV-2 with the help of antisense oligonucleotides acting against RNA of virus on an in vitro model are given. The ability of antisense oligonucleotides to suppress viral replication in diseases caused by coronaviruses using the example of SARS and MERS is shown. The identity of the initial regulatory section of RNA of various coronaviruses was found within 50 - 100 nucleotides from the 5'-end, which allows using antisense suppression of this RNA fragment. A new RNA fragment of the virus present in all samples of coronovirus SARS-CoV-2 has been identified, the suppression of which with the help of an antisense oligonucleotide can be effective in the treatment of COVID-19. The study of the synthesized antisense oligonucleotide 5`-AGCCGAGTGACAGCC ACACAG, complementary to the selected virus RNA sequence, was carried out. The low toxicity of the preparations of this group in the cell culture study and the ability to reduce viral load at high doses according to real time-PCR data are shown. The cytopathogenic dose exceeds 2 mg/ml. At a dosage of 1 mg/ml, viral replication is reduced by 5 - 13 times. Conclusions are made about the prospects of this direction and the feasibility of using the inhalation way of drug administration into the body.


Subject(s)
COVID-19 , Coronavirus Infections , Drug-Related Side Effects and Adverse Reactions
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.03.366609

ABSTRACT

Having claimed over 1 million lives worldwide to date, the ongoing COVID-19 pandemic has created one of the biggest challenges to develop an effective drug to treat infected patients. Among all the proteins expressed by the virus, RNA helicase is a fundamental protein for viral replication, and it is highly conserved among the coronaviridae family. To date, there is no high-resolution structure of helicase bound with ATP and RNA. We present here structural insights and molecular dynamics (MD) simulation results of the SARS-CoV-2 RNA helicase both in its apo form and in complex with its natural substrates. Our structural information of the catalytically competent helicase complex provides valuable insights for the mechanism and function of this enzyme at the atomic level, a key to develop specific inhibitors for this potential COVID-19 drug target.


Subject(s)
Infections , COVID-19
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3679859

ABSTRACT

Background: The pandemic of the coronavirus disease 2019 (COVID-19) has brought a global public health crisis. However, the pathogenesis underlying COVID-19 are barely understood.Methods: In this study, we performed proteomic analyses of airway mucus obtained by bronchoscopy from severe COVID-19 patients. In total, 2351 and 2073 proteins were identified and quantified in COVID-19 patients and healthy controls, respectively.Results: Among them, 92 differentiated expressed proteins (DEPs) (46 up-regulated and 46 down-regulated) were found with a fold change > 1.5 or < 0.67 and a p-value < 0.05, and 375 proteins were uniquely present in airway mucus from COVID-19 patients. Pathway and network enrichment analyses revealed that the 92 DEPs were mostly associated with metabolic, complement and coagulation cascades, lysosome, and cholesterol metabolism pathways, and the 375 COVID-19 only proteins were mainly enriched in amino acid degradation (Valine, Leucine and Isoleucine degradation), amino acid metabolism (beta-Alanine, Tryptophan, Cysteine and Methionine metabolism), oxidative phosphorylation, phagosome, and cholesterol metabolism pathways.Conclusions: This study aims to provide fundamental data for elucidating proteomic changes of COVID-19, which may implicate further investigation of molecular targets directing at specific therapy.Funding Statement: This work was supported by grants from the National Key R&D Program of China (2016YFC0903700), the National Natural Science Foundation of China (81520108001 and 81770043), and grant specific for COVID-19 study from Guangzhou Institute of Respiratory Health.Declaration of Interests: The authors have no conflict of interest to declare.Ethics Approval Statement: All the procedures were approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University (No. 2020-65). Verbal informed consent were obtained from all participants because the family members were in quarantine.


Subject(s)
COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.25.20027664

ABSTRACT

Objective: To evaluate the spectrum of comorbidities and its impact on the clinical outcome in patients with coronavirus disease 2019 (COVID-19). Design: Retrospective case studies Setting: 575 hospitals in 31 province/autonomous regions/provincial municipalities across China Participants: 1,590 laboratory-confirmed hospitalized patients. Data were collected from November 21st, 2019 to January 31st, 2020. Main outcomes and measures: Epidemiological and clinical variables (in particular, comorbidities) were extracted from medical charts. The disease severity was categorized based on the American Thoracic Society guidelines for community-acquired pneumonia. The primary endpoint was the composite endpoints, which consisted of the admission to intensive care unit (ICU), or invasive ventilation, or death. The risk of reaching to the composite endpoints was compared among patients with COVID-19 according to the presence and number of comorbidities. Results: Of the 1,590 cases, the mean age was 48.9 years. 686 patients (42.7%) were females. 647 (40.7%) patients were managed inside Hubei province, and 1,334 (83.9%) patients had a contact history of Wuhan city. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached to the composite endpoints. 399 (25.1%) reported having at least one comorbidity. 269 (16.9%), 59 (3.7%), 30 (1.9%), 130 (8.2%), 28 (1.8%), 24 (1.5%), 21 (1.3%), 18 (1.1%) and 3 (0.2%) patients reported having hypertension, cardiovascular diseases, cerebrovascular diseases, diabetes, hepatitis B infections, chronic obstructive pulmonary disease, chronic kidney diseases, malignancy and immunodeficiency, respectively. 130 (8.2%) patients reported having two or more comorbidities. Patients with two or more comorbidities had significantly escalated risks of reaching to the composite endpoint compared with those who had a single comorbidity, and even more so as compared with those without (all P<0.05). After adjusting for age and smoking status, patients with COPD (HR 2.681, 95%CI 1.424-5.048), diabetes (HR 1.59, 95%CI 1.03-2.45), hypertension (HR 1.58, 95%CI 1.07-2.32) and malignancy (HR 3.50, 95%CI 1.60-7.64) were more likely to reach to the composite endpoints than those without. As compared with patients without comorbidity, the HR (95%CI) was 1.79 (95%CI 1.16-2.77) among patients with at least one comorbidity and 2.59 (95%CI 1.61-4.17) among patients with two or more comorbidities. Conclusion: Comorbidities are present in around one fourth of patients with COVID-19 in China, and predispose to poorer clinical outcomes.


Subject(s)
Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Renal Insufficiency, Chronic , Pneumonia , Diabetes Mellitus , Cerebrovascular Disorders , Immunologic Deficiency Syndromes , Neoplasms , Hypertension , Death , COVID-19 , Hepatitis B
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.06.20020974

ABSTRACT

Background: Since December 2019, acute respiratory disease (ARD) due to 2019 novel coronavirus (2019-nCoV) emerged in Wuhan city and rapidly spread throughout China. We sought to delineate the clinical characteristics of these cases. Methods: We extracted the data on 1,099 patients with laboratory-confirmed 2019-nCoV ARD from 552 hospitals in 31 provinces/provincial municipalities through January 29th, 2020. Results: The median age was 47.0 years, and 41.90% were females. Only 1.18% of patients had a direct contact with wildlife, whereas 31.30% had been to Wuhan and 71.80% had contacted with people from Wuhan. Fever (87.9%) and cough (67.7%) were the most common symptoms. Diarrhea is uncommon. The median incubation period was 3.0 days (range, 0 to 24.0 days). On admission, ground-glass opacity was the typical radiological finding on chest computed tomography (50.00%). Significantly more severe cases were diagnosed by symptoms plus reverse-transcriptase polymerase-chain-reaction without abnormal radiological findings than non-severe cases (23.87% vs. 5.20%, P<0.001). Lymphopenia was observed in 82.1% of patients. 55 patients (5.00%) were admitted to intensive care unit and 15 (1.36%) succumbed. Severe pneumonia was independently associated with either the admission to intensive care unit, mechanical ventilation, or death in multivariate competing-risk model (sub-distribution hazards ratio, 9.80; 95% confidence interval, 4.06 to 23.67). Conclusions: The 2019-nCoV epidemic spreads rapidly by human-to-human transmission. Normal radiologic findings are present among some patients with 2019-nCoV infection. The disease severity (including oxygen saturation, respiratory rate, blood leukocyte/lymphocyte count and chest X-ray/CT manifestations) predict poor clinical outcomes.


Subject(s)
Lymphopenia , Fever , Severe Acute Respiratory Syndrome , Pneumonia , Death , COVID-19 , Diarrhea
SELECTION OF CITATIONS
SEARCH DETAIL